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Introduction

Strength of materials, also called “mechanics of materials” is a necessary knowledge
for mechanical engineering students. Since it is known that English is an international
language for communication,  we offered this simplified course to be given as an
addition to students who are willing to take part  in international  programs, study
abroad or work abroad.

This work is meant to be available as an open source course, as digital and paperback
versions. These can help explain some phenomena, translate technical terms and get
used to other notations.

Strength of materials is widely used in mechanical and civil fields. Understanding
this subject allows technicians and engineers to better analyze systems and to build
more  reliable  products.  Mechanisms  are  succumb  to  forces,  torques,  and  loads,
exposing them to deformation. The latter (deformation) should be thoroughly studied,
since as we have already mentioned how the objects and beams that we’re studying
take part in a mechanism, thus, every deformation counts. The slightest mistake in
calculation or  choice of  either  material  or  dimension can lead the system to fail.
Reliable systems are demanded and essential for a sustainable future for the industry.
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Cohesion Torsors

Torsors are an algebraic entity that simplifies the denotation of various elements. In
our  study, cohesion  torsors represent  the  internal  solicitations  in  beams  due  to
external forces and torques. It can reduce the writing of six components of forces and
torques, three each, in one entity as follows:

{τ coh II / I }G={Fx Mt
Fy Mfy
Fz Mfz}G

We begin with splitting our beam into parts. G is the centre of inertia of the section
we chose to work on. Our first section has the length of x

After splitting the beam, we choose a direction to work on. If we are working on the
left, the resulting cohesion torsor is minus the sum of the torsors on the left of the
section in the point G.
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{τ coh II / I }G=−{Fx Mt
Fy Mfy
Fz Mfz}G

If we are working on the right, the resulting cohesion torsor is the sum of the torsors
on the right of the section in the point G.

{τ coh II / I }G=+{Fx Mt
Fy Mfy
Fz Mfz}G

Cohesion  torsors  express  the  efforts  and  torques  applied  to  the  beam.  Each
component  will  help  draw the  diagrams  of  normal  and  shear  forces,  torque  and
bending moments. It simplifies the way we describe whatever happens to our system
in any zone we got.

We will apply some forces and moments to the beam. We will have an outcome as
follows:
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In  each  zone,  we  transfer  the  static  torsors  of  each  point  to  the  point  G.  While
resulting forces do not change, moments are transferred and can change. We will
work on the leftmost zone (OA):

{τ O⃗}O={ 0 −Mt
FO y 0

0 0 }O
We will transfer the torsor from the point O to the point G, the centre of inertia of the
section:

{τ O⃗}G={ 0 −Mt
FO y 0

0 0 }G={ F⃗O

M G(O⃗)}G={ 0 −Mt
FO y 0

0 −Fy . x}G
where: M G(O⃗)=M O(O⃗)+G⃗O∧ F⃗O

Thus:

{τ coh II / I }G=−{τ F⃗O
}G=−{ 0 −Mt

FO y 0
0 −Fy . x}G={

0 Mt
−FO y 0

0 FO y . x}G
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Tension & Compression

When two  opposing  forces  are  applied  to  the  beam,  directed  outwards,  tend  to
stretch it the beam is succumb to tension

A beam undergoing tensile efforts has a cohesion torsor in its centre of inertia as
follows:

{τ cohII / I}G={N 0
0 0
0 0}G

Normal Stress

Solicitations  like  tension  invoke  normal  stress denoted  by  σ  (a  pressure  whose
direction is perpendicular to the cross-section of the beam) where:

σ = F
S

σ: normal stress in N/mm2 or MPa

F: normal force applied to the cross-section in N

S: cross-section area in mm2
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Tensile Test
Tensile test  consists of an application of  tensile load  to a specimen that will keep
getting stretched until reaching a maximum elongation. That’s when the specimen
eventually  fails  and  breaks  in  two  parts.  This  test  aims  at  determining  some
mechanical characteristics of the studied material, such as:

Percentage elongation denoted δn where: δ n=
lu−l0

l0

×100

with lu = l0 + Δl

Percentage reduction in area denoted Z where: Z=
S0−Su

S0

×100

Young’s  modulus  or  the modulus of  longitudinal  elasticity,  denoted E, can be
graphically determined from the conventional stress-strain curve; it is the slope of

the linear zone (OA) of the curve: E=σϵ

Tensile strength denoted σm  where: σ m=
Fmax

S0

Rupture strength denoted σr where: σ r=
Fr

S0

Elasticity limit denoted σe where: σ e=
Fe

S0
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Elongation denoted ε where: ϵ=Δ l
l0

After reaching the maximum load or stress,  necking  occurs. Necking is the heavy
diminution  of  the  cross-section  area  of  the  specimen  due  to  uniformity  in  the
distribution of strength along its length. 

A device is used to continuously record the evolution of load and elongation. A force-
displacement diagram is drawn as follows:
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We can then draw the stress-strain diagram:

Zone  OA  represents  a  linear  variation  of  the  stress.  Here,  stress  and  strain  are

proportional  and give us the relation:  E=σϵ where E is  Young’s modulus or

the modulus of longitudinal elasticity. The zone is limited by the elasticity limit σe.

Zone AB represents the  yield plateau.  It is when the tested specimen endures an
increase in strain with a  slight  or  no increase at  all  of  stress.  The material  starts
behaving plastically. 

Zone BC corresponds to the hardening zone where both strain and stress grow until
reaching a maximum value of stress σm then a lower value of rupture strength σr and a
maximum elongation ε.
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Hooke’s Law
Since internal stress invokes deformation, it is possible to track the latter and extract
some important material characteristics through curves.

For the normal stress σ, we can trace the stress-strain graph: σ=f(ε):

From the graphs, we can extract  Young’s modulus  denoted  E and is calculated as

follows: E=σϵ

Resistance Condition

In  order  to  resist  failure,  we  have  set  a  limit  value  of  stress  that  shouldn’t  be

surpassed.  σ max≤R pe where:  Rpe=
Re

s
=
σ e

s
s  being  a  security

coefficient.
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Rigidity Condition

Rigidity condition sets a limit to the longitudinal deformation of the beam, where:

Δ l≤Δ l lim .

Stress Concentration

Beams  in  real  life  are  no  perfect,  uniform  structures.  They  definitely  do  have
variations in dimensions and geometry. Grooves, threads and holes are considered
inconsistencies, which make stress concentrated on the weakest section of the studied
shaft  or  beam.  This  impacts  the  resistance  condition  by  multiplying  the  tensile
strength by a constant value kt.

k tσ max≤R pe

 

The latter is chosen from an abacus as follows:

r is a ratio that varies according to the type of variation of the cross-section geometry
(i.e. groove, thread, etc.)
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Compression

A beam is succumb to compression when two opposing forces, directed toward it 
tend to compress it. 

A beam undergoing compressive efforts has a cohesion torsor in its centre of inertia
as follows:

{τ cohII / I}G={−N 0
0 0
0 0}G

Resistance Condition

Similar to tension, in order to resist failure, we have set a limit value of stress that

shouldn’t be surpassed. σ max≤Rpe

Rigidity Condition

Rigidity condition sets a limit to the longitudinal deformation of the beam, where:

|Δ l|≤Δ l lim . We take the absolute value since the variation of length is negative

in compression.

For  longer  beams,  compression leads  to  buckling.  This  phenomenon has  its  own
calculations depending on the length of the beam. (View Buckling chapter)
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In compression, the variation of length is negative because the compressive forces
squeeze the beam longitudinally, however, the cross-section area increases instead. In
calculations, we consider that S0 = Su
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Torsion

A beam is said to undergo  torsion  when a twisting moment acting about its axis
named torque tends to twist it. The cohesion torsor of this solicitation is written as
follows:

{τ cohII / I}G={0 M T

0 0
0 0 }G

Torsion is characterized by an  angle of twist denoted  α (also  ϕ) that describes the
angle between two sections along the beam.

α (rad) is calculated as follows: α=
MT L

G J
T: torque (N.mm)

L: length of the beam (mm)

G: shear modulus (Coulomb’s modulus) (MPa)

J (or IG): polar moment of inertia (mm4)
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The polar moment of inertia is calculated according to the shape of the cross-section 
of the beam. We usually work on circular sections.

Another angle is also calculated, and it is  the unitary angle of torsion denoted  θ,
used to determine the condition of rigidity and is calculated as follows:

Resistance Condition
Stress in torsion is tangent to the cross-section. In order to resist efforts, the internal
shear stress τ should stay below a set value. The latter is a practical sliding limit  Rpg

measured in MPa and is:  Rpg=
Rg

s
s is a security ratio and Rg is a sliding limit.

The condition of resistance becomes:

τ max≤Rpg⇔
MT R

J
≤Rpg
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Dimensioning the beam from the condition of resistance:

D≥ 3√ 16T
π Rpg

In case of concentrated stress:

D≥ 3√ 16 K t M T

π Rpg

Deformation

As an equivalent to the condition of rigidity in tension and compression, deformation
has its rule in torsion. It uses the unitary angle of twisting θ and compares it to a limit

value: θ≤θ lim .

Dimensioning the beam from this condition:

D≥ 4√ 32T
π Gθ lim .

After calculating diameters from both conditions, choose the greater value among
them.
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Shearing

A beam is said to undergo shearing when a shearing stress  tends to split  it.  The
cohesion torsor of this solicitation is written as follows:

{τ cohII / I}G={ 0 0
Fy 0
0 0}G

or {τ cohII / I}G={ 0 0
0 0
Fz 0}G

It is experimentally impossible to realize a shearing test. We’re meant to study the
tangential efforts in a cross-section of the beam, since shearing is not affected by its
length. Shearing forces practically imply bending moments as the cohesion torsors
showed. Shearing stress leads to a different solicitation: flexure (or bending).

Shear Stress

Shearing is associated with a shear stress denoted by τ (a pressure whose direction is
tangent or parallel to the cross-section of the beam) where:

τ = F
S
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τ: shear stress in N/mm2 or MPa

F: shear (tangential) force applied to the cross-section in N

S: cross-section area in mm2

Shear Modulus
For the shear stress τ, we can trace the stress-strain graph: τ=f(γ):

Coulomb’s  modulus or  shear  modulus  represents  the  modulus  of  transverse
elasticity.
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From the graph, we can extract  Coulomb’s modulus denoted  G and calculated as

follows: G=τγ

Resistance Condition
Every element of the surface bears a shearing effort included within the plane of the
cross-section. The shear strain is thus tangent to the surface and is denoted τ where

τ = F
S

Condition of resistance: τ ≤Rpg
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Bending

We’ll study the example of simple bending in this chapter.

A beam undergoes bending when exposed to a shearing effort and a bending moment
as the cohesion torsor indicates:

{τ cohII / I}G={ 0 0
Fy 0
0 −Fy .Δ x}G

or {τ cohII / I}G={ 0 0
0 Fz .Δ x
Fz 0 }

G

Bending Test
Let’s study whatever happens to a beam undergoing simple bending. The fibres of the
tested beam will deform. 

In our example, the upper fibres (fibres above the axis or the centre line of the beam)
will be compressed due to compressive normal forces. The lower fibres (fibres below

 the axis or the centre line of the beam) will be extended due to tensile normal forces.
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Bending  leads  to  the  rotation  of  the  cross-section  of  the  beam by  an  angle  Δϕ.
Bending is also characterized by θ unitary angle of bending where:

 θ=Δφ
Δ x

The resulting normal strain is thus calculated using the formula:

σ M=−Eθ y

where:

y: The distance between the axis or neutral fibre and the point M

E: Young’s modulus

Normal Stress & Bending Moment

Normal stress develops at most in the farthest fibre. σ max=
|Mf max|

I
v

where:

I: Quadratic moment (mm4)

v: maximum value of the farthest point ymax (mm)

Mfmax: maximum value of bending moment (N.mm)
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Stress Concentration
As in other solicitations, stress is more concentrated in the inconsistent cross-sections
of the beam. We choose a suitable constant  kf from the provided abacus and we
multiply it by the normal stress:

 k fσ max≤R pe

Resistance Condition
Similar to tension and compression, in order to resist failure, we have set a limit value

of stress that shouldn’t be surpassed. σ max≤Rpe

This condition allows us to calculate the dimensions of our beam based on the efforts
it will bear. Dimensioning depends on the geometry of the object.

Quadratic Moment

I z=∑
s

y2Δ s=∫
s

y2 ds ; I y=∑
s

z2Δ s=∫
s

z2 ds

ρ 2= y2+ z2 ; I=∫
s

ρ 2 ds=∫
s

( y2+ z2)ds

Thus: I=I y+I Z
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Rigidity Condition

Deflection  defines the curve of the central line of the beam after deformation.

There  is  a  relation  between  deflection  and  bending  moment  where:

E J z y ' ' (x)=Mfz In order to resist failure: δ≤δ lim .
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Composed Solicitations

In mechanical systems, different parts are exposed to various types of solicitations.
For example, shafts can have axial and radial loads resulting from gears and elements
of  transmission,  torsion  due  to  rotation,  bending  due  to  fixtures...  Loads  are  not
uniaxial. They are not of the same nature either. We might end up with a full cohesion
torsor:

{τ coh II / I }G={Fx Mt
Fy Mfy
Fz Mfz}G

An example of composed solicitations in a shaft:
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Examples of composed solicitations:

Case 1: Bending + Torsion:
A beam undergoes bending and torsion if the cohesion torsor in its barycentre G is
written as follows:

 {τ cohII / I}G={ 0 Mt
Fy 0
0 Mfz}G or {τ cohII / I}G={ 0 Mt

0 Mfy
Fz 0 }G

Ideal Moment of Bending:

In such a solicitation, both normal and tangential stresses act simultaneously. We thus
need to  find the ideal  moment  of  bending,  denoted Mfi in  order  to  calculate  the
equivalent normal stress.

Mf i=(1−
1

2λ
)Mf + 1

2λ √Mf 2+Mt 2

Mfi: ideal moment of bending (N.mm)

Mf: moment of bending (N.mm)

Mt: torque (N.mm)

λ: ratio between Rpg and Rpe where λ=
Rpg

Rpe

Material Steel Cast Iron

λ 0.5 1
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Resistance Condition
In order to resist failure, the beam’s normal stress should not surpass a set value,

where: |σ max|=
|Mf max|

I
v

⩽Rpe

Deformation
There are two parameters to calculate in order to check the rigidity of the tested beam
Since it is a composed solicitation, we obtain two conditions:

From bending: Maximum deflection: δ≤δ lim .

From torsion: Angular deformation: θ≤θ lim .

Case 2: Tension + Torsion:
A beam undergoes tension and torsion when the cohesion torsor in the barycentre of
the beam is written as follows:

{τ cohII / I}G={N Mt
0 0
0 0 }G

Ideal Stress:

Every fibre in the beam supports two types of stresses: normal and tangential. We
ought to find the ideal stress to use it later in the calculations of resistance. The ideal
stress is given by the formula:

σ i=√σ 2+4τ 2
where: τ =

M T

J
R and σ =N

S
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Resistance Condition:

For this solicitation, the resistance condition is written as follows:

σ i≤Rpe where: Rpe=
σ e

s

Case 3: Shearing + Torsion:
A beam undergoes shearing and torsion when the cohesion torsor in the barycentre of
the beam is written as follows:

{τ cohII / I}G={ 0 Mt
Fy 0
Fz 0 }G

Since all  stresses are tangential to the cross-section, we can obtain the equivalent
stress τ by summing up the tangential stresses caused by the shear forces and the
twisting torque.

τ eq=τ shearing+τ torsion where:

τ torsion=
M T

J
R  and τ shearing=

Fshearing

S

with: F shearing=√Fy2+Fz2

Resistance Condition:

For this solicitation, the resistance condition is written as follows:

τ eq≤Rpg where: Rpg=
Rg

s
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Case 4: Bending + Tension/Compression:
A beam undergoes bending and tension/compression when the cohesion torsor in the
barycentre of the beam is written as follows:

{τ cohII / I}G={N 0
Fy 0
0 Mfz}G or {τ cohII / I}G={N 0

0 Mfy
Fz 0 }G

Since all stresses are normal to the cross-section, we can obtain the equivalent stress
σ by summing up the normal stresses caused by the compressive or tensile forces and
the bending moments.

σ eq=σ tension /compression+σ bending where:

σ bending=
Mf eq

I
R  and σ tension/compression=

N
S

with: Mf eq=√Mfy2+Mfz2

We neglect the shearing forces caused by bending, for their tangential stress is feeble 
when compared to normal stress.

Resistance Condition:

For this solicitation, the resistance condition is written as follows:

σ eq≤Rpe where: Rpe=
σ e

s
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Generally:
A beam can undergo a variety of composed solicitations, which are not necessarily
within the formerly mentioned cases. We have two criteria:

Von Mises Criterion: This criterion is the most accurate. For advanced system
analysis, the software generally calculates the resulting stress using the Von Mises

criterion: σ eq=√σ 2+3τ 2

Tresca’s Criterion: The equivalent normal stress is calculated as follows:

 σ eq=√σ 2+4τ 2
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Buckling

Any long and thin beams share the same behaviour when compressive efforts tend to
compress them. In fact, when the applied charge reaches a critical limit, the beam
deforms, bends and fails.

In this final chapter, we will deal with this phenomenon. We will learn how to wisely
choose the formulae according to a set of parameters.

For an elastic material  with constant mechanical properties,  a beam is put to test
through  an  application  of  various  charges.  As  the  charges  increase,  we  notice  a
change in the behaviour of the beam’s deformation. For a certain critical value F c, the
beam will fail. We distinguish 3 cases:

F < Fc: the beam is aligned, in a state of stable equilibrium, succumb to compression.

F = Fc: the beam is in a state of unstable equilibrium with a possibility of change in
the latter towards a more stable equilibrium in composed bending.

F > Fc: the beam is unstable.
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Direction of buckling:

Deformation occurs in the perpendicular direction of the weakest area moment of
inertia.

Slenderness: 

A beam is  said  to  be  slender  if  it’s  cross-sectional  dimensions  are  feeble  when
compared  to  its  length.  Slenderness,  denoted  λ is  used  in  the  calculations  of

acceptable charges. We obtain it from the formula: λ= L
ρ

λ: the slenderness of the beam

L: unsupported length of the beam (mm)

ρ: gyration radius of the cross-section (mm)

The gyration radius is obtained from the following relation: ρ=√ I min

S
Imin: the smallest area moment of inertia (mm4)

S: cross-sectional area (mm2)

30



Unsupported length & Boundary Conditions (Pinned, fixed & free):
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Critical Force and Stress - Euler’s Formula:

After calculating the slenderness ratio λ and the unsupported length L, we can get a
relation between Young’s modulus E and the quadratic moment of inertia I, where:

Fc=
π 2 E I min

L2 =π
2 E S

λ 2

We can also deduce the critical stress: σ c=
π 2 E

λ 2

Critical Slenderness:

In our calculations, we will suppose that σc=Re to work only in the elastic domain. We

obtain: Re=
π 2 E S

λ 2 with λ=λ c⇒λ
2=π

2 E
Re

where λc depends only on the material.

For steel:  λc=100

For aluminum:  λc=70

For cast iron:  λc=60

Security Ratio:

In other solicitations, we used a security ratio s. In buckling, this ratio is twice the
regular ratio. We denote it k and we calculate it as follows:

k=2 s=
2 Rec

R pc
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Resistance Condition:

Since we have learned how to calculate Euler’s critical load, we know that we should
never reach that value. Thus, we ought to set a new acceptable limit where danger is
avoided. This new value must be strictly below the critical load. It  is determined
according to the value of the slenderness ratio:

Slenderness λ<20 20<λ<100 λ>100

Beam size Short Average Long

Formula Compression Rankine’s formula Euler’s formula

Fadm=Rpc S
Fadm=

R pc S

1+( λλ c
)

2
Fadm=

R pc S

2( λλ c
)

2
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The Principle of Superposition

Definition: The principle of superposition is a static method used to  determine

an unknown reaction in an isostatic or 1st degree hyperstatic structures. It allows the
decomposition of a beam, loaded with n loads, into the sum of n beams with only
one load each.

Degree of static indeterminacy: the number of redundant forces in the structure, and
is often referred to as  the degree of hyperstaticity. It is obtained as the result of
subtracting the number of equations from the number of indeterminate reactions:

nreactions – nstatic equations = h

Redundant forces or reactions can’t be determined by solving only the equilibrium
equations.  That’s  why the  principle  of  superposition  suggests  that,  in  hyperstatic
structures,  the  indeterminate  force  can  be  found  using  the  equivalence  of  three
equations: stress, deflection and equilibrium where in a determined point of the beam:

σtotal = σI + σII

δtotal = δI +  δII

Rtotal = RI + RII

1

A B

RB
RA

FB

P

A B

RBIRAI P

A B

RBII

FBRAII

≡ +

Fig 1



NB: When  applying  the  principle  of  superposition,  boundary  conditions  in

secondary beams are the same as the original beam.

In the given example, a simply supported beam is decomposed into simply supported
beams with the same length L. If the main beam is a cantilever, the beams obtained
from decomposition are also cantilevers.

Unlike the equilibrium equations and the cohesion torsors, the structure is never split
in length in respect to the smaller intervals where forces and momenta are applied.
The length is taken integrally.
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Theorem of Castigliano

Application  of  Castigliano’s  theorem  in  a  hyperstatistic
system: This theorem generally applies to first degree hyperstatic systems. As for

problems with a higher degree of indetermination, other methods are used.

Solving Method:

1. We begin with the verification of the degree of static indetermination. It should
be equal to 1.

2. We decompose the initial system to obtain a set of isostatic problems: P0 is the
initial problem made isostatic by removing the hyperstatic unknown or support
denoted X.

3. We superpose to P0 the problem P1 having the same boundary conditions of P0

and loaded with the unknown X previously removed in the 2nd step.

4. The displacement (if  X is a load) or rotation (if  X is a momentum) of the

application point of X is equal to zero. Thus the theorem gives:
dW e

dX
=0

The bending moment is: M z=M 0+M 1=M 0+X M̄1 where:

M0 is the moment from the cohesion torsorsor from the problem P0

M1 is the moment from the cohesion torsorsor from the problem P1

M1 is the moment from the cohesion torsorsor from the problem P1 with an
assigned value equal to 1 (X = 1)

In general: W e=
1
2
∫ M 2

EI
+1

2
∫ MT

2

GJ
+ 1

2
∫ N 2

EI
+1

2
∫ V 2

GJ
After simplification: 

X=
−∫M 0 M̄ 1 dx

∫ M̄ 1
2
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	Examples of composed solicitations:

